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4-methyl anisole is oxidized, in a first stage 
to produce a cation radical that undergoes deprotona-
tion. Although a single oxidation peak is reported in 
literature corresponding to the loss of two electrons, 
we have been able to split it i nto a couple of peaks for 
one electron each. The cation radical is deprotonated 
to form a neutral radical which oxidizes to a cationic 
species. Two kind of reactions can occur, depending 
upon the reaction conditions: Whether a nucleophylic 
attack of the acetonitrile on the intermediate species, 
or polymerization of 4-methyl anisole. 

 
The following table resumes the analyses of 

products: 
 

Oxidation 
Potential 

V vs 
Ag/AgNO3 

Charge 
Q 

(C) 

Mass  
deposit 
(mg) 

Mass  
soluble 
product 

(mg) 

%  
deposit 

% 
Soluble 
product 

1.40 114 5 29 15 85 

2.10 180 7 29 20 80 

 
Chronocoulommetry allowed us to calculate 

the number of electrons involved in the reaction. 
 Spectroelectrochemical experiments showed 
the formation of the cation radical of 4-methyl anisol, 
followed by deprotonation.  
 It was found that the soluble product and the 
deposit have the same basic structure and the differ-
ence is the number of monomeric units. 
 SEM experiments showed that the morphol-
ogy of the polymer obtained on the electrode surface 
changes with temperature. Variation of temperature 
has allowed the understanding of several kinetic as-
pects of those reactions taking place at the electrode-
solution interface. A decrease in temperature causes a 
morphological variation of the deposit; it changes 
from a “cauliflower” morphology to a homogene-
ously distributed deposit on the electrode surface. In 
other words, the temperature affects the extension of 
the film  
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Fig. 3.- Chronoamperogram of 4-methyl  
               anisol in CH3CN  
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Fig. 2.- in situ UV-Visible spectra taken during  
             the anodic oxidation of 4-methyl anisol 

Fig. 1.- Cyclic Voltammetry of 4-methyl anisol in ace 
              tonitrile / Tetrabutyl ammonium Tetrafluorobo 
              rate at platinum electrode. 
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